亚洲av无码专区在线观看下载_91精品国产综合久久四虎久久无码一级_蜜臀精品无码AV在线播放_久久水蜜桃亚洲av无码精品麻豆

技術文章

您的位置

首頁 技術文章

Gamry電化學工作站:電化學石英晶體微天平研究生物膜的形成

點擊次數(shù):4534 更新時間:2017-08-04

Gamry電化學工作站:電化學石英晶體微天平研究生物膜的形成

Introduction

Biofilms are microbes attached to a surface. The  microbes form a film on the surface, giving rise to the name biofilm. This Application Note deals specifically  with bacterial biofilms that convert chemicals to  electrical current on electrodes. Because of this   function, we refer to them as electrochemically active biofilms (EABs). Interest in EABs ranges from their function as bioanodes and biocathodes in microbial fuel cells to new types of biosensors as well as novel biosynthesis of sustainable chemicals.

This application note shows results for Geobacter sulfurreducens, an oxygen-intolerant species of bacteria able to grow on  electrodes.1

If you are not familiar with quartz-crystal microbalances, see our Application Note “Basics of a quartz crystal microbalance”.

Experimental Notes

Culturing of G. sulfurreducens biofilms is not discussed in this Application Note. G. sulfurreducens is a non- pathogenic  BSL-1  biological agent.

Unlike typical electrochemical experiments, current  must be collected over several days to give time for the biofilm to grow. Choose an appropriate sampling rate, such as one measurement every five minutes. We show only one day of  growth.

Gamry’s  jacketed  EuroCell™  Electrochemical  Cell  Kit was used as the reactor vessel. An eSorptionProbe (Part No. 971-18) with 10 MHz Au-coated crystals  was  used.  A saturated Ag/AgCl electrode was used as  reference.

All parts of the reactor vessel were sterilized prior to biofilm growth.2  The assembled reactor vessel  was therefore sterile. Biological growth medium was then added. Oxygen was purged from the vessel using a gas mixture  of  20%  CO2   and  80%  N2.  The  electrode potential was then fixed to 0 VAg/AgCl using Gamry’s Framework™ software with the chronoamperometry script. A suspended cell culture of G. sulfurreducens was added and current was  recorded.

Results

Basics of biofilm growth

Figure 1. Photograph of biofilm grown on the 10 MHz Au-coated crystal for the  eSorptionProbe.

Biofilm can be grown on the Au-coated crystal (Figure 1). The pink hue on the Au surface is the biofilm. The biofilm is only found on Au because the electrode is the electron sink for the electrons generated from the  biofilm metabolizing acetate (a source of organic  carbon). In order to survive and grow, the biofilm must have an electron sink. As a result, surfaces such as the plastic coating that do not accept electrons show no biofilm growth.

The biofilm acts as a catalyst for the electrochemical conversion of acetate to carbon dioxide. The half-reaction above is an overall description of what happens in an individual cell in the biofilm. It does not account for carbon assimilation as biomass. The exact path through which electrons follow to reach the electrode surface is complex and not discussed in this Application Note.

For G. sulfurreducens biofilm, the acetate half-reaction is activated at electrode potentials more positive than approximay −0.4 VAg/AgCl. This  measured  value  is  true for most Au and C surfaces. Figure 2 shows the result of fixing the electrode potential to 0 VAg/AgCl in the presence of G. sulfurreducens cells and acetate. Cells that attach to the electrode form the initial biofilm.To survive, the initial biofilm metabolizes acetate and produces electrons.This produces an electron flow and is the cause of the increase in current in Figure 2.

Figure 2. Current output over time of a growing G. sulfurreducens biofilm. The electrode potential was fixed at 0 VAg/AgCl.

As the biofilm grows, current increases. In effect, the current output over time for EABs is a growth curve. Exponential growth can be easily checked by plotting the data in Figure 2 on a semilogarithmic plot (Figure 3). The initial region is the pre-exponential growth phase or lag phase. The linear region is exponential biofilm growth.

Figure 3. Semilogarithmic plot of current output over time. The linear region reflects exponential biofilm growth.

Standard practice is to confirm existence of the biofilm   by using scanning electron microscopy. Figure 4 shows a micrograph of the biofilm after fixation (standard procedure). The flat background is the bare Au surface. The biofilm was purposely removed to show the Au surface and biofilm in the same image.  The micrograph   is a visual indication that biofilm produced the current observed. If the biofilm is distinct like the pink hue in Figure 1, a photograph may be   sufficient.

Figure 4. Scanning electron micrograph of the biofilm on the Au-coated crystal after growth and a standard fixation procedure. After fixation, the biofilm is no longer alive. Single cells and multi-layered cell clusters are visible.

Biofilm voltammetry

During biofilm growth, the chronoamperometry script  can be stopped without damaging the biofilm. This is valuable for a simple voltammetric sweep. Usually cyclic voltammetry is the preferred script because of its simplicity. Figure 5 shows two cyclic voltammograms of    a growing biofilm (replicate) at 44 hours and 49 hours of growth. A catalytic wave is observed with several redox peaks superimposed between −0.33 VAg/AgCl  to  −0.23 VAg/AgCl. As the scan reached positive potentials, the effect of the redox peaks is minimized. In this potential region, limiting current is observed. The height of the catalytic wave increases with biofilm  growth.

 

Figure 5. Cyclic voltammograms of a G. sulfurreducens biofilm during growth. Scan rate was 30 mV/s. (Note that the chronoamperometry scan was stopped in order to run the cyclic voltammetry script.)

QCM frequency shift

Cell attachment and biofilm growth can be monitored in real-time using Gamry’s electrochemical quartz-crystal microbalance (eQCM). Using the Gamry Resonator™ software, both series frequency-shift (dFseries) and current can be recorded simultaneously. Figure 6 shows dFseries and Reduced Q (secondary y-axis) during   biofilm growth. This was recorded simultaneously with the current shown in Figure 2. The graphs are separated for clarity.

Figure 6. dFseries and Reduced Q over time decreasing in response to biofilm growth on the QCM. These data were taken simultaneously with the current data from Figure 2.

During the time it took the biofilm to reach a current output  of  40  µA  in  Figure  2,  dFseries  reached  −1250 Hz. Usually, for rigid films, dFseries can be converted to mass using the Sauerbrey Equation. However, the decrease in Reduced Q from 1500 to 1000 indicates a significant decrease in the rigidity of the biofilm. As a reference, a −1800 Hz dFseries shift during copper plating onto the QCM results in a minimal decrease in Reduced Q from 1280 to 1240. The important point is that it is typically incorrect to use the Sauerbrey  Equation to convert dFseries to mass for a biofilm, because of the biofilm’s viscous nature.

For most rigid film depositions using the eQCM, a plot of dFseries vs charge 一elds a straight line (for example, copper plating). In the case of G. sulfurreducens biofilm, this is not true.2 The reason is that charge passed does  not determine how much biofilm has grown on the electrode surface. For example, it is possible to have the total charge passed at the electrode increase with time without biofilm growth. Current passed over time is  more relevant for G. sulfurreducens biofilm because current is a proxy for biofilm growth. Figure 7 confirms this expectation and shows a linear correlation between dFseries and current.

Figure 7. dFseries vs. current (linear fit in   red).

Conclusions

This application note introduces electrochemically active biofilms to researchers outside of the field, and shows how the eQCM can be integrated into basic electrochemical techniques. It may also be useful to high school, undergraduate, or new graduate students who want to learn more about the techniques used to study electrochemically active biofilms. QCMs have a variety of uses in addition to monitoring biofilm growth:

•Chemical and biological sensors

•Electropolymerization

•Li+  intercalation

•Corrosion studies

•Electrodeposition

Gamry Instruments would like to acknowledge Dr.Jerome T. Babauta and Professor Haluk Beyenal of the Biofilms Research Group at Washington State University for the generation of these data.

Application Note Rev. 1.0 1/11/2016 Ó Copyright 2016 Gamry Instruments, Inc.

美國Gamry電化學關鍵詞:多通道電化學工作站,電化學工作站價格,石英晶體微天平,電化學工作站廠家,電化學工作站品牌
版權所有 總訪問量:418909 地址:上海市楊浦區(qū)逸仙路25號同濟晶度310室 郵編:200437
聯(lián)系人:客服 郵箱:jqiu@gamry.com
GoogleSitemap 技術支持:化工儀器網 管理登陸 滬ICP備15019588號-2
亚洲av无码专区在线观看下载_91精品国产综合久久四虎久久无码一级_蜜臀精品无码AV在线播放_久久水蜜桃亚洲av无码精品麻豆
  • <code id="w4e4a"></code>
  • <table id="w4e4a"><wbr id="w4e4a"></wbr></table>
    <button id="w4e4a"></button>
    <li id="w4e4a"></li>
    <li id="w4e4a"></li>
    <rt id="w4e4a"><delect id="w4e4a"></delect></rt>
  • <strike id="w4e4a"></strike>
    <li id="w4e4a"></li>
  • <button id="w4e4a"><input id="w4e4a"></input></button>
  • 大地资源网在线观看免费官网 | 黄色一级片黄色| 国产福利视频在线播放| 法国空姐在线观看免费| 超碰在线97免费| 亚洲色成人一区二区三区小说| 熟妇熟女乱妇乱女网站| 国产一区二区在线免费播放| 欧美 日韩 国产在线观看| 免费观看国产视频在线| 最新国产黄色网址| 亚洲成人福利在线观看| 99热自拍偷拍| 久久久久久人妻一区二区三区| 青娱乐国产精品视频| www.久久av.com| 男女男精品视频站| 激情婷婷综合网| 国产成人精品视频免费看| 玩弄中年熟妇正在播放| 国产欧美久久久久| 男女啪啪免费观看| 好吊色这里只有精品| 亚洲综合伊人久久| 91丝袜超薄交口足| 中文字幕色网站| 91精品999| 91精品视频国产| 黄大色黄女片18第一次| 天天操,天天操| 午夜免费福利视频在线观看| 91看片在线免费观看| 自拍偷拍一区二区三区四区| 欧美日韩一区二区三区69堂| 久久久久xxxx| 手机成人av在线| 奇米777四色影视在线看| 国产欧美久久久久| 国产一区二区视频播放| 丰满人妻中伦妇伦精品app| 成熟老妇女视频| 91小视频网站| 美国av在线播放| 国产免费一区二区视频| 成人在线免费在线观看| 在线免费观看视频黄| 日韩 欧美 高清| 中文字幕66页| 超碰在线资源站| 国产精品久久久久9999爆乳| 国产欧美日韩网站| 乌克兰美女av| 麻豆三级在线观看| 三级a三级三级三级a十八发禁止| 国产亚洲精品网站| 国产日本欧美在线| www.com黄色片| a级网站在线观看| 日韩小视频网站| 999这里有精品| 久久99中文字幕| 吴梦梦av在线| 国产福利一区视频| 免费国产黄色网址| 五月天在线免费视频| 97精品国产97久久久久久粉红| 国产免费一区二区视频| 色乱码一区二区三区熟女 | 男人的天堂99| 欧美美女黄色网| www.com污| 中文字幕一区二区三区四区在线视频| 久久香蕉视频网站| 91网址在线观看精品| 日本黄大片一区二区三区| 福利在线一区二区三区| 久久久久免费精品| www.四虎成人| 日韩爱爱小视频| 99久久99精品| 亚洲第一页在线视频| 一区二区久久精品| 欧美国产日韩另类| av亚洲天堂网| 午夜免费视频网站| 最新视频 - x88av| 99热这里只有精品7| 1314成人网| 国产欧美综合一区| 国产在线视频在线| 波多野结衣av一区二区全免费观看 | 欧美少妇在线观看| 麻豆md0077饥渴少妇| 超碰97免费观看| 青青草原网站在线观看| 亚洲精品久久久久久久蜜桃臀| 亚洲熟妇无码av在线播放| 欧美精品久久久久久久自慰| 隔壁人妻偷人bd中字| 国产伦精品一区二区三区四区视频_| 国产二区视频在线| 少妇无码av无码专区在线观看| 欧美极品欧美精品欧美| 在线观看国产一级片| 嫩草影院国产精品| 欧美性受xxxxxx黑人xyx性爽| 亚洲在线观看网站| 中国一级大黄大黄大色毛片| 日韩成人av免费| 中文 日韩 欧美| 亚洲 欧美 综合 另类 中字| 91动漫在线看| 丁香啪啪综合成人亚洲| 青娱乐国产精品视频| 日韩一级片播放| 在线观看国产一级片| 熟妇熟女乱妇乱女网站| 少妇av一区二区三区无码| 成人午夜视频免费在线观看| 国产喷水theporn| 国产香蕉一区二区三区| 国产成人无码一二三区视频| 欧美激情国内自拍| 欧美一级视频免费看| 孩娇小videos精品| 欧美另类videosbestsex日本| 国产免费黄色av| 免费看的黄色大片| 97公开免费视频| 欧美成人免费高清视频| 亚洲怡红院在线| 黄色三级中文字幕| 激情五月亚洲色图| 久操手机在线视频| 99re精彩视频| 免费看黄在线看| 亚洲黄色片免费| 日本三级免费网站| 中文字幕第一页亚洲| 日韩精品手机在线观看| 人人干人人视频| 久久久久久久香蕉| 欧美在线观看视频网站| 91网站在线观看免费| 日韩高清第一页| 欧美日韩国产精品激情在线播放| 中文字幕亚洲欧洲| 久久久999视频| 亚洲精品在线网址| 国产a级片免费观看| 美国av在线播放| 久久久国内精品| 超碰在线97免费| 给我免费播放片在线观看| 香蕉视频xxxx| 国产三级日本三级在线播放| 国产高清www| www.com久久久| 午夜精品在线免费观看| 婷婷无套内射影院| 国产一区二区三区播放| 国产精品久久久久久久av福利| 久久久久久香蕉| ww国产内射精品后入国产| 人妻内射一区二区在线视频| 国产精品三级一区二区| 亚洲第一成肉网| 一区二区xxx| 久久久久免费精品| 国产免费成人在线| 怡红院av亚洲一区二区三区h| 九一免费在线观看| 中文字幕超清在线免费观看| 日韩av在线中文| 久久成人福利视频| 911福利视频| 男人搞女人网站| 无码内射中文字幕岛国片| 久久综合九色综合88i| 福利在线一区二区| a级片一区二区| 亚洲国产一二三精品无码| 三年中文高清在线观看第6集| 成人3d动漫一区二区三区| 鲁一鲁一鲁一鲁一澡| 女女百合国产免费网站| 天天插天天操天天射| 国产三级三级三级看三级| 欧美三级午夜理伦三级| 成年人免费在线播放| 成年网站在线免费观看| 蜜臀久久99精品久久久酒店新书| 成人三级视频在线播放| aaa毛片在线观看| 欧美激情成人网| 免费看黄色一级大片| 亚洲77777| 91视频福利网| 亚洲77777| 色七七在线观看|